Hyperboloïde de révolution

Hyperboloïde de révolution

Hyperboloïde de révolution hyperboloïde engendré par la rotation d'une hyperbole autour d'un de ses axes de symétrie.

Encyclopédie Universelle. 2012.

См. также в других словарях:

  • hyperboloïde — [ ipɛrbɔlɔid ] adj. et n. m. • 1765; de hyperbole et oïde ♦ Didact. 1 ♦ Rare En forme d hyperbole. 2 ♦ N. m. Math. Quadrique à centre dont les sections planes sont des hyperboles. Hyperboloïde de révolution. ● hyperboloïde nom masculin Quadrique… …   Encyclopédie Universelle

  • Hyperboloide — Hyperboloïde En mathématiques, un hyperboloïde est une surface du second degré de l espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s étendre à l infini. Les… …   Wikipédia en Français

  • Hyperboloïde — En mathématiques, et plus précisément en géométrie, un hyperboloïde est une surface du second degré de l espace euclidien. Il fait donc partie des quadriques, avec pour caractéristique principale de posséder un centre de symétrie et de s étendre… …   Wikipédia en Français

  • hyperboloïde — (i pèr bo lo i d ) adj. Terme de géométrie. Qui se rapproche de l hyperbole. Courbes hyperboloïdes.    S. m. Solide produit par la révolution d une hyperbole. ÉTYMOLOGIE    Hyperbole, et terme grec signifiant forme. SUPPLÉMENT AU DICTIONNAIRE… …   Dictionnaire de la Langue Française d'Émile Littré

  • Surface de revolution — Surface de révolution Une surface de révolution est une surface paramétrée et orientée de ℝ³, la surface balayée par la rotation d une courbe plane. Les surfaces de révolution comprennent les tores, les sphères, les cylindres, les sphéroïdes, les …   Wikipédia en Français

  • Surface de révolution — Une surface de révolution est une surface paramétrée et orientée de ℝ³, la surface balayée par la rotation d une courbe plane, appelée méridienne. Les surfaces de révolution comprennent les tores, les sphères, les cylindres, les sphéroïdes, les… …   Wikipédia en Français

  • QUADRIQUES — Les surfaces de l’espace matériel, que nous connaissons par leur emploi, en architecture par exemple, étaient autrefois classées en «corps ronds» et «corps droits». La sphère et le cube sont des surfaces typiques de ces deux familles. Les corps… …   Encyclopédie Universelle

  • LUNETTES ASTRONOMIQUES ET TÉLESCOPES — Sous l’appellation un peu désuète de «lunettes astronomiques» se rangent une série d’instruments d’importance historique considérable: c’est grâce, en effet, à la lunette de Galilée (fig. 1) que la conception du monde a évolué du géocentrisme… …   Encyclopédie Universelle

  • Шары Данделена — Шары Данделена. Секущая плоскость касается шаров и не параллельна образующей конуса (коническое сечение  эллипс с фокусами в местах касания) …   Википедия

  • Miroir (optique) — La loi de la réflexion optique est un des fondements de l optique géométrique : elle indique que le rayon réfléchi est dans le plan d incidence (défini par le rayon incident et la normale à la surface au point de réflexion) et que l angle de …   Wikipédia en Français


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»